激光晶体中的一种新型夹杂物

马笑山 王四亭 金宗儒 沈雅芳 陈 家 光 (中国科学院上海光机所) (宝山钢铁公司)

提要:在 BeAl₂O₄: Cr⁸⁺ 晶体生长中发现一种新型夹杂物。用电子探针进行了 组分分析并对其形成机制作出了解释。

A novel inclusion in laser crystals

Ma Xiaoshan, Wang Siting, Jin Zongru, Shen Yafang (Shanghai Institute of Optics and Fine Mechanics, Academia Sinica)

Chen Jiaguang

(Bao Shan Steel Company)

Abstract: In growing alexandrite crystals, a novel inclusion has been found. The inclusions are quantitatively analysed by electronic probe and the mechanism for forming inclusions is suggested. In our Bridgman MgF₂ crystals, the inclusions in $\langle 001 \rangle$ direction have also been observed.

、(引004) 言

激光晶体除要求良好的光学均匀性外, 还要求有低的损耗系数。因此研究夹杂物形成规律指出其消除办法对提高激光晶体质量 有重大的现实意义。我们在生长 BeAl₂O₄: Cr³⁺ 晶体时,发现晶体中主要有两种杂夹 物,一种近于平行于晶体生长方向,另一种却 不论晶体生长方向如何始终平行于 <100>方 向即晶体生长速度最大的方向^{CD}。前者符合 于组分过冷理论所推断的熔质尾迹,其形态 也符合;而后者占夹杂物的绝大多数,在文献 [1]中曾按其与晶体生长习性间的关系加以 论述,但对这些夹杂物并未给出定量分析结 果。我们用电子探针对这些夹杂物进行了定 量分析,并提出其形成机制。

▲ 图 流光

第13 卷第12 期

二、实验与结果

1. 晶体生长

用铱坩埚,高频感应加热,Ar为保护气 氛,在YA-2型自制单晶炉上用引上法生长。 分别生长了 a 轴、b 轴及 c 轴晶体。生长的工 艺条件见[2].

2. 夹杂物的观察

.761 .

细磨,以钻石膏抛光以防止在加工中引入铁、 铝等杂质。加工后的试样在 90×的光学显 微镜下观察,发现主要有两种夹杂物,一种是 平行于 <100>方向长条状夹杂物,如图 1 所 示;一种是近似平行于生长方向的无定形夹 杂物,如图 2 所示。三种生长方向的晶体中 夹杂物均如上述,而未见例外情况,其中平行 于 <100>方向的夹杂物占绝大部分。

图 1 〈001〉方向生长的 BeAl₂O₄:Cr³⁺ 晶体夹杂物 (90×, 010 切片)

图 2 〈010〉方向生长的 BeAl₂O₄:Cr³⁺ 晶体夹杂物 (90×, 100 切片)

将A₈₈₄₀、A₈₄₁₂、A₈₄₁₅ 三个晶体 <010> 切 片, 抛光后涂碳膜, 以 731 型电子探针仪进行 测试。首先用阴极射线荧光法观察寻找处于 试样表面上的夹杂物, 然后观察反射电子成 分像 (Compo)。由于原子序数不同, 反射电 子像衬度不同。原子序数大的部分 Compo 像明亮, 由此可直观得出观察部分组分分布 概况。图 3 是 A₈₈₄₀ 试样中平行于 <100> 方 向夹杂物的 Compo 像, 其他试样中一些平行 于 <100> 方向的夹杂物的 Compo 像与此类 似, 不再示出。

所观察到的 <100> 取向的夹杂物对准恰 在表面之下的部分进行定量分析(防止夹杂 物恰在试样表面时夹杂物裂隙中由于沾染而 造成的假结果),组分分析结果列入表1。

图 3 A₈₃₄₀ 试样(100)方向夹杂物的 Compo 象 (400 ×)

试样	组分	FeO* (实际为 Fe ₂ O ₃ 限于计算机程序 计算为 FeO)	Cr ₂ O ₃	MgO	SiO ₂	CaO	SO3	Al ₂ O ₃	BeO* (差额法 求得)	0
改生长。	上原用土	合量 Wt%								品的の
A ₈₄₀₂	基体	0.0045	0.1563	0.0000	0.0142	0.0000	0.0000	77.42	22.41	50.83
	夹杂物	0.6639	0.2542	0.0345	0.0000	0.1676	0.0056	80.40	18.47	49.96
A ₈₄₁₂	基体	0.0000	0.2492	0.0024	0.0064	0.0000	0.0156	81.21	18.75	50.24
	夹杂物①	5.6231	0.0159	0.0663	0.2257	0.2780	0.6143	78.90	14.28	48.13
	夹杂物②	0.0201	0.0532	0.0000	0.0662	0.0006	0.0000	90.32	9.54	48.68
	夹杂物③	0.0000	0.0544	0.0000	0.0851	0.0087	0.0000	91.35	8.50	48.51,
A ₈₄₁₅	基体	0.0000	0.2229	0.0000	0.0000	0.0000	0.0000	80.25	19.53	50.34
	夹杂物①	0.2254	0.1868	0.0069	0.2304	0.0412	0.0416	90.59	8.67	48.47
	夹杂物②	0,3478	0.1802	0.0019	0.1787	0.0272	0.0153	92.09	7.16	48.18

表1 BeAl₂O₄:Cr³⁺ 晶体基体及平行于 a 轴夹杂物电子探针分析结果

.762.

由表1可见, BeAl₂O₄:Cr³⁺ 晶体中平行 于<100>方向的大部分夹杂物中, Fe、Mg、Si、 Ca、S等杂质含量较基体中杂质含量高些,少 部分夹杂物中杂质含量较基体中杂质含量低 些,无明显规律。夹杂物中 Cr₂O₈ 含量与基 体中 Cr₂O₈ 含量无显著区别。但夹杂物中 Al₂O₈ 含量较基体中 Al₂O₈ 含量为高。为比 较起见,将 BeO·Al₂O₈ 及 BeO·3Al₂O₈ 中 Al₂O₈ 与 BeO 含量的重量百分比例于表 2.

表 2 BeO·Al₂O₃ 及BeO·3Al₂O₃ 中Al₂O₃ 及 BeO 含量

组分	Al ₂ O ₃ (Wt%)	BeO (Wt%)
BeO·Al ₂ O ₃	80.30	19.70
BeO·3Al ₂ O ₃	92.44	7.56

由表1及表2可见,平行于 <100> 方向 的夹杂物其组分含量介于 BeO·3Al₂O₃和 BeO·Al₂O₃之间。鉴于在分析夹杂物时,在 夹杂物之上有厚度不等的基体存在,因而分 析结果必然介于夹杂物与基体组分之间。这 样平行于 <100> 方向的夹杂物其组分很可能 接近于 BeO·3Al₂O₈ 的组分。

对于近似平行于生长方向的夹杂物,我 们只分析了 0 轴生长 <010> 切片中的夹杂 物,其结果列于表3。由表3可见,除试样 As416 中夹杂物 ②③ 测得有高浓度的 ZrO2、 SiO₂及相当量的 Fe₂O₃、CaO、MgO 外,其余 夹杂物中 Na、Mg、Si、S、Cl、K、Fe、Ca、Zr 等 含量均不超过0.3%, 而 BeO 及 Al₂O₃ 含量 则偏离化学比其多,且无一定规律。如果近 似平行于生长方向的夹杂物是由于组分过冷 引起的熔质尾迹,那末引起组分过冷主要的 杂质是主组分的偏聚,即Al2O3或 BeO 局部 浓度偏高所致。部分组分过冷是由于熔体中 ZrO2, SiO2, Fe2O3, CaO、MgO 含量过高所引 起。表3所列的结果表明,夹杂物中 Cr2O3 含量普遍较基体中 Cr2O3 含量为低, 有些夹 杂物中 Cr₂O₃ 其低以至不能检出。 这可能

试样	Assao Assao				A ₈₄₁₆			A ₈₄₀₂	
含量 Wt% 部位 组分	基体	夹杂物①	夹杂物②	夹杂物③	夹杂物①	实杂物②	夹杂物③	夹杂物①	夹杂物②
Na ₂ O	0.0109	0.0505	0.0388	0.0541	0.0052	0.1637	0.0000	0.0083	0.0027
MgO	0.0000	0.0089	0.0263	0.0252	0.0177	0.8063	0.0665	0.0000	0.0000
Al ₂ O ₃	77.2639	31.2654	46.0856	42.1626	87.8524	13.8219	44.9786	73.4788	77.1274
SiO ₂	0.0384	0.0859	0.2387	0.1956	0.0924	15.4140	0.5166	0.0173	0.0355
SO ₃	0.0000	0.1142	0.0219	0.0530	0.0352	0.0602	0.0654	0.0455	0.0234
Cl ₂ O**	0.1723	0.0822	0.1029	0.0907	0.1557	0.2808	0.2620	0.1120	0.2766
K ₂ O	0.0018	0.0051	0.0073	0.0204	0.0040	0.0153	0.0000	0.0000	0.0041
FeO*	0.0240	0.0094	0.0356	0.0253	0.0392	1.4257	0.0000	0.0200	0.0086
Cr ₂ O ₃	0.3034	0.0000	0.0250	0.0674	0.1322	0.0000	0.0773	0.0000	0.0281
CaO	0.0099	0.0319	0.0276	0.0618	0.0187	1.3052	0.0325	0.0235	0.0342
ZrO2	0.0000	0.0000	0.0380	0.0000	0.0282	31.2051	20.6351	0.0000	0.0000
BeO*	22.1755	68.2713	53.3523	56.8966	11.6189	35.5017	33.3660	25.9949	22.4599

表 3 BeAl₂O₄:Cr³⁺ 晶体基体及平行于生长方向夹杂物电子探针分析结果

见表1说明;** 应为CI,表中按计算机列出表达式

注: 表1、表2所列数据均为计算机给出的原始数据,未考虑有效数字。

和某些相变有关,但至今还没有验证方案。

三、讨 论

由于在晶体生长界面上观察到大台阶. 结合晶体生长习性,曾提出[1](100)取向的夹 杂物系由于台阶前沿吸附了硅、硫、氯、钠、 钙、镁、钾等杂质而被毒化,故即使有足够大 的过冷度时台阶也不再能向前推移, 而必须 有更大的过冷度才能重新成核形成新的台 阶。新老台阶之间容易捕获熔体夹杂物而形 成平行于 <100> 方向的条状夹杂物。定量分 析的结果证明,夹杂物中硅、硫、铁、钙、镁等 杂质含量并不高, 而夹杂物之主要组分含量 却与熔体平均组分不一致。这证明台阶毒化 理论有其不足之处。那末这种夹杂物的形成 机制应该是,熔体中客观存在着 BeO·3Al₂O₃ 的分子团,但在一般情况下并不为晶体 所捕获。当晶体中存在位错时,由于位错 应力场的作用,可使晶体生长界面位错附近 产生附加的过不饱和度^[3,4],因而会形成空 核。如果晶体位错应力场不是各向同性的, 这种过不饱和度以至于空核形成, 也将是非 各向同性,而与晶体生长习性有关。由于 <100>方向为最强的 PBC 方向157, 所以空核 长度方向可能是沿 <100> 方向排列。在温度 波动时,当瞬时生长速度大于临界生长速度 时,BeO·3Al₂O₃分子团被捕获而形成 <100> 取向的夹杂物。为证明这一假设,我们观察 了 <001> 方向生长的晶体的 <010> 切片及 <001>切片的 X-光形 貌像及<001>切片的

图 4 G 轴生长晶体 (010) 切片[004] 衍射 X-光形貌图

图 5 C 轴生长晶体 (001) 切片[040] 衍射 X-光形衍图

图 6 C 轴生长晶体 (001) 切片中的夹杂物分布 夹杂物分布图,分别列于图 4、图 5、图 6。

由图 4、5、6 可见, O 轴生长晶体中心区 位错密度低,边缘处位错密度高, Рилоь Г. M. ⁶³等也有类似结果。夹杂物分布情况与 位错密度分布极为相似。文献 [1] 中还曾论 述过晶体边缘部分温度起伏大,因而使 BeO·3A1₂O₃ 分子团更易由于瞬时生长速度 超过临界生长速度而被捕获。在 Bridgeman 方法生长的晶体(MgF₂:Ni²⁺)中,也观察到 平行于生长速度最大 $\langle 001 \rangle$ 方向的夹杂物。 与引上法生长 BeA1₂O₄:Cr³⁺不同的是,夹 杂物分布是晶体中心部位较高。这类夹杂物 在生长速度各向异性的晶体时都会出现。

参考文献

- [1] 马笑山等; 《中国激光》, 1985, 12, No. 6, 353.
- [2] 马笑山等;《硅酸盐学报》,1984, 12, No. 2, 131.
- [3] B. van der Hoek et al.; J. Cryst. Growth, 1982, 56, 621.
- [4] B. van der Hoek et al.; J. Cryst. Growth, 1982, 58, 365.
- [5] 马笑山等; «物理学报», 1983, 32, No.10, 1302.
- [6] Рылов Г. М. и др.; Кристаллография, 1981, 26. No. 2, 362.